OA06.03
Plasmablast Phenotype and Mucosal Antibodies to V2 in Vaccine-induced Protection Against SIVmac251

Luca Schifanella1,2, Nicola Binello1, Monica Vaccari1, Shari N. Gordon4, Francesco Caccuri1, Matthew Blackburn1, Melvin Doster1, Namal Liynage1, Poonam Pega1, Xiaoying Shen3, Georgia D. Tomaras4, David Venzon4, Don Stablien5, Susan W. Barnett6, Dan Barouch7, Sanjay Phogat1, Genoveffa Franchini1

1NIH/NCI, Vaccine Branch, Bethesda, MD, United States, 2Università degli Studi di Milano, Department of Biomedical and Clinical Sciences - Section of Infectious Diseases and Immunopathology, 3Georgia D. Tomaras, Durham, NC, United States, 4NIH/NCI, Biostatistics and Data Management Section, Bethesda, MD, United States, 5The EMMES Corporation, Rockville, MD, United States, 6Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States, 7Sanofi Pasteur, Swiftwater, PA, United States

Background: We have recently recapitulated the RV144 vaccine efficacy in a SIVmac251 model. In our study, rectal anti-cyclic V2 IgG antibodies correlated with a decrease risk of SIVmac251 acquisition (p = 0.0063). Analysis of the homing markers on plasmablast (PB) resulted in a higher frequency of alpha4beta7+ PBs in animals with higher levels of IgG and IgA to cyclic V2 in rectal mucosa.

Methods: We investigated the homing potential in 5 different vaccine strategies by measuring alpha4beta7 and CXCR3 as markers for gut mucosa and inflammatory sites, respectively in a total of 114 macaques. The immunoglobulin (Ig) expression on PB and the mucosal antibody responses were assessed in all groups. We studied a cohort of macaques immunized 4 times with ALVAC-SIV and twice with gp120/album or gp120/MF59. A second cohort was immunized twice with DNA-SIV/gp120/album or once Ad26-SIV, and boosted with ALVAC-SIV/gp120/album twice. Finally, an additional group was immunized 4 times with NYVAC-SIV boosted twice with gp120/album.

Results: Both ALVAC-SIV/gp120/album and DNA-SIV/gp120/album immunized animals were protected from SIVmac251 mucosal acquisition (p = 0.029 and p = 0.014, respectively). However, no protection was observed with ALVAC-SIV/gp120/MF59, NYVAC-SIV/gp120/album and Ad26 primed regimens. DNA-SIV/gp120/album and ALVAC-SIV/gp120/album immunizations increased the frequency of alpha4beta7+ plasmablasts (p = 0.0001 and p = 0.015) while ALVAC-SIV/gp120/MF59, NYVAC-SIV/gp120/album increased the frequency of CXCR3+ plasmablasts (p = 0.0001 and p = 0.004 respectively). We are completing Ad26-SIV and DNA-SIV/gp120/album studies as well as the analysis of Ig expression and correlations with mucosal antibody responses.

Conclusions: Preliminary results suggest that different vaccine modalities are able to alter the plasmablast homing and the effectors functions of the antibody response at mucosal sites that may correlate with protection.

OA06.04
Use of Enzyme-digested Virus-like Particles as Probes for Flow Cytometric Sorting of HIV-specific Neutralizing Ab-producing B-cells

Evan M. Cale1, Nicole A. Doria-Rose1, Tommy Tong2,3, Ema T. Crooks2,3, Richard Nguyen1, David R. Ambrozak1, Stephen P. Perfetto1, Mario Roederer1, James M. Binley2,3, John R. Mascola1

1NIAID, National Institutes of Health, Vaccine Research Center, Bethesda, MD, United States, 2Torrey Pines Institute for Molecular Studies, San Diego, CA, United States, 3San Diego Biomedical Research Institute, San Diego, CA, United States

Background: Isolating new broadly neutralizing antibodies (bNAbs) provides fresh insights for rational HIV-1 vaccine design. Several sites of vulnerability to bNAbs are now well defined, and it is likely that additional targets exist. Virus-like particles (VLPs) that express Env trimers display all of the natural epitopes and are therefore attractive candidates for use as probes. However, VLP surfaces are also decorated with nonfunctional forms of HIV Env. Exposing VLPs to proteases clears nonfunctional Env, leaving native trimeric Env intact. The resulting “trimer-VLPs” preferentially bind to nAbs compared to non-neutralizing antibodies and therefore may have gained sufficient selective power for use as B cell probes to identify new bNAbs.

Methods: PBMC from HIV-infected patients were stained with the enzyme-digested trimer-VLPs, and VLP-positive memory B cells were sorted by flow cytometry. Multiplex RT-PCR was performed on cell lysates to amplify kappa, lambda, and heavy chain genes. Cloned antibodies were assessed for neutralization breadth and potency against a panel of Env-pseudoviruses using the TZM-bl neutralization assay.

Results: VLPs were used to sort B cells from the donor of the broad CD4bs antibody VRC13. The sort yielded relatives of VRC13, as well as unrelated sequences that exhibited high sequence divergence from germline VH genes and/or long CDR3 regions, which are characteristics of known bNAbs. Cloning and characterization of these Abs is ongoing.

Conclusions: Unlike many previously used B cell probes, VLPs express multiple epitopes including those for trimer specific antibodies which allows for simultaneous sorting of B-cells of different specificities. Additionally, these probes are devoid of non-functional forms of Env and therefore preferentially bind to neutralizing Ab-producing B cells. VLPs therefore hold great promise for isolating novel HIV-specific bNAbs that can better inform vaccine design.

OA06.05
Viral Escape Pathways from Broadly Neutralising Antibodies Targeting the HIV Envelope Cleavage Site Enhance MPER Mediated Neutralisation

Constantinos Kurt Wibmer1,2, Daniel J. Sheward3, Jinal N. Bhiman4,5, Nonkululeko Ndabambi4, Debra H. Elliott4, Julie Rouelle4, Ashley Smir4, Salim S. Abdool Karim4, James E. Robinson4, Lynn Morris1,2, Carolyn Williamson1,2, Penny L. Moore1,2,5

1Centre for HIV & STIs, National Institute for Communicable Diseases, NHLS, Johannesburg, South Africa, 2Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa, 3Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa, 4Tulane University Medical Center, Department of Pediatrics, New Orleans, LA, United States, 5Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa

Background: A preventative HIV-1 vaccine will likely elicit broadly neutralising antibodies (bNAbs). The diverse modes of neutralisation by bNAbs leads to variable escape pathways in each epitope. Documenting escape and identifying common elements